
A Study on String Matching Methodologies
Shivendra Kumar Pandey, Neeraj Kumar Dubey, Sonam Sharma

Department of Computer Application and Research

National Institute of Technical Teachers Training and Research
Bhopal-462002, MP, India

Abstract— String matching is the technique of finding the
occurrences of a character pattern in a given string. In this
paper, we provided an overview of different pattern matching
algorithm and also proposed a algorithm For pattern
matching .In this paper we have evaluated several pattern
matching algorithms such as Naive String matching algorithm
, brute force algorithm , Rabin-Karp algorithm , and K-M-P
algorithm , and we proposed an algorithm for pattern
matching . Our proposed algorithm works in linear time, if the
number of occurrences of the pattern in a string is very less
.We also compared the matching performance of these
algorithms. It is observed that the performance of string
matching algorithm is based on the selection of algorithms
used for matching.

Keywords— String Matching , Rabin Karp Algorithm, KMP,
our purposed Algorithm , comparison of String Matching
algorithms.

1. INTRODUCTION

String matching is a technique to find out the pattern in a
given string . let ∑ be a set of alphabet . the member of set
∑ called character or symbol . For Example let ∑={a, b ,c} ,
then aabbcaa is a String over ∑ .The pattern denoted by
P[1..m] and Text denoted by T[1…n].If pattern P occurs in
Text T with sift ‘s’ then we call pattern occur with sift ‘s’
and ‘s’ is a valid shift otherwise it is invalid shift. The
string matching is a technique of finding all valid presence
of the pattern P in Text T.
EXAMPLE-> Let ∑= {a , b , c} and Text T= a a b a c a b b
b c b . And pattern P = b b c b now
Text T=

From above figure the value of valid shift s = 6.

2. NAÏVE STRING MATCHING ALGORITHM

 Naïve String matching algorithm also known as brute
force matching . In this technique pattern matched by text
character by character and slide right one character at a time.
this technique doesn’t require any preprocessing time and
takes constant extra space .expected character comparison
required in this technique is 2n. in this technique, it checks
for valid shifts by using for loop which checks whether

P[1…m] = T[s+1..s+m] for each of the n-m+1 possible
value of s
Consider the following example
Let ∑= {a , b , c} and Text T= a a b a c a b b b c b . And
pattern P= b b c b
The brute force algorithm works as follows

Worst case time complexity of Naïve String matching
algorithm is O((n-m+1)m). Matching time of Naïve string
matching algorithm equals to its running since it doesn’t
require any preprocessing time

3. RABIN-KARP STRING MATCHING ALGORITHM

 This algorithm works in two phases in the first phase it
pre-process and in a second phase it performs matching.
This algorithm uses hashing technique. Rabin-Karp
algorithm is used for finding the numeric pattern in a given
text T. in this algorithm first it divides patterns P by a
predefined prime number q and calculates remainder of the
pattern. In next step it calculates the remainder of first m
character of text T. If the remainder of first m characters
and remainder of the pattern P are equal, then only it
perform matching .otherwise no need of comparison. This
process will be repeated from s =0 to s= n-m. Time
complexity of Rabin-Karp algorithm in first phase (pre-
processing phase) is O(m) and in matching phase is O((n-
m+1)m). Suppose we have two number A and B then there
are following possibility
If remainder of A =REM(A/q) and remainder of
B=REM(B/q) are equal
1>Then successful hit occur if REM(A/q) and REM(B/q)
are equal and A=B.

Shivendra Kumar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4732-4735

www.ijcsit.com 4732

2>Spurious hit if REM(A/q) and REM(B/q) are equal but
A!=b.
3>Unsuccessful hit REM(A/q) and REM(B/q) are not equal
and A!=b.
Example. For a given Text T pattern P and Prime number q.
T=234567899797797976534356678886756456890975545
34343424545475655454

P= 667888
q=11

REM(Text) =234567/11 =3
REM(P) = 667888/11 =1
REM(Text) ≠ REM(P)
Now move on to the next set of characters from text and
repeat the procedure.

4. KNUTH-MORRIS-PRATT ALGORITHM

Knuth Morris and Pratt developed an algorithm for pattern
matching which takes linear time O (n) for finding patterns.
This algorithm works in two phases. In the first phase it
runs an algorithm which is called a preprocessing algorithm
and in this phase it calculates prefix function. In the second
phase this algorithm runs KMP matcher algorithm.

A. The prefix function ,π

The prefix pattern , π for a pattern contains the idea about
how the pattern matches against the shifts of itself. Prefix
function is used for avoiding useless shifts .

B. The KMP Matcher

In this phase , it has String ‘S’, pattern ‘P’ and prefix
function π as input . It finds the occurrence of pattern in a
string and returns number of shifts of pattern after which
occurrence is found.
Example:
Let a pattern P = abacab and a string
S= abacaabaccabacabaabb

Prefix function,π

I 0 1 2 3 4 5
P[i] a b A c a b
Π[i] 0 0 1 0 1 2

KMP Matcher:

5. OUR PROPOSED ALGORITHM:

In this algorithm we work in two phases. First phase is the
preprocessing phase and second phase is matching phase .In
preprocessing phase, we only find some index values of
substrings of length m from text T and the second phase
matches these substrings with actual pattern P. We tried to
show the working of two phases by following two
algorithms.

A. Phase 1 preprocessing phase

In the first phase that is preprocessing phase we will find
the some index values from each substring of length m
from text T which matches with first and last character of
pattern P and insert these index values into a the queue Q .
The approximate running time of pre-processing phase is
O(n-m).

1. n = length S;
2. m = length P;
3. X P[0],y <-P[m-1];
4. For(i=0 to n-m);
5. If(S[i]==x && S[m+i-1]==y)
6. Insert I into the queue Q
7. Return Q

B. Phase 2 Matching phase‐>

Matching phase totally depends on the size of the queue.
In this phase, we find the substrings of length m on the
basis of index value And compare the pattern with the
substrings of size m. if a match occurs, then we called it
is successful hit otherwise it will be spurious hit . The
approximate running time of matching algorithm O (lm)
where l is the size of the queue and m is the length of
pattern. Following algorithm shows the matching phase
1. While(Q!= empty)
2. {
3. I= dequeue()
4. K =I;
5. Count==0;
6. For(j=0 to m-1)
7. {
8. If(P[j]==S[k])
9. {
10. K=k+1;
11. Count = count+1;
12. } // end of if condition
13. Else
14. Goto 1
15. }
16. If(count==m)
17. {
18. Print(“pattern occur at location ” i);
19. }
20. } // end of while loop
21. Exit

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

Shivendra Kumar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4732-4735

www.ijcsit.com 4733

Example
Let we have a given text T=a b b c a b a b c b c a b b,
Pattern P= a b b and the queue Q.

Shivendra Kumar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4732-4735

www.ijcsit.com 4734

Dequeue another element of the the queue:

6. COMPARISON:

7. CONCLUSIONS:

 This paper evaluates the performance of some existing
algorithm with our purposed pattern matching algorithm.
Our proposed algorithm is a linear time matching algorithm.
It could be better to other algorithms in some
constraints .the running time of this algorithm depends on
size of the queue i.e. the number of index value in the queue
which shows that the number of expected patterns in text T.
if there is only one element in the queue then maximum
time taken by matching phase would be O(m) , where m is
the size of pattern.

REFERENCES
1.http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_al

gorithm.
2. http://en.wikipedia.org/wiki/String_matching.
3. http://www.digitalforensicssolutions.com/Scalpel.
4.Introduction to algorithm ,corman
5. International Journal of Soft Computing and Engineering (IJSCE) ISSN:

2231-2307, Volume-I, Issue-6, January 2012
6. Xinyan Zha and Sartaj Sahni “Multipattern String Matching On A

GPU”,IEEE,2011,pp. 277-282.
7. Nathan Tuck, Timothy Sherwood, Brad Calder, George Varghese

“Deterministic Memory-Efficient String Matching Algorithms for
Intrusion Detection” IEEE INFOCOM 2004

Algorithms
Time complexity
for preprocessing

Time complexity
for Matching

Brute force
algorithm

No preprocessing
is required

O((n-m+1)*m)

Rabin karp O(m) O(n+m)

Knuth-morris-
pratt

O(m) O(n+m)

Our proposed
algorithm

O(n-m) O(l*m)

Shivendra Kumar Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4732-4735

www.ijcsit.com 4735

